Ratio Scientiae
RATIO SCIENTIAE BLOG
  • Home
  • Meet the Author
  • Ratio Scientiae Blog
  • Random Science
  • Writing & News
  • Nonfiction Books
    • Science Can Be Right Because It Can Be Wrong
    • The Gift of Science
    • Random Science
  • Fiction Books
    • The Sun Zebra
    • Spirit Women
  • Science Cat (Mascot)
  • Contact

10/31/2020

Employing the Timeline and Cross-Sectional Methods to Study the Change in the Color of Leaves During Autumn

0 Comments

Read Now
 
Scientists often need to evaluate how a group of entities changes over time in response to some natural or man-made processes. Such entities can be the animals or plants belonging to a species, or they can be non-living things such as the glaciers, rivers, or mountains in a given area. To do this, scientists could try to study all the entities they want to evaluate, but this is often too costly, impractical, or impossible. So to make possible this evaluation, scientists may use one of two methods. I will illustrate these methods by applying them to the study of the change in leaf color during the fall.
 
The Timeline Method
The first method is the timeline method. This method involves following some entities over time during the period of interest and documenting how they change. The idea is then that the change of the overall population or group can be extrapolated from the change of the particular entities that are followed.
 
I used the timeline method to document how the leaves changed during one week in the autumn in a maple tree in my neighborhood. The genus of maples is Acer, but I don’t know the species of this particular tree. The color of the majority of the leaves of the tree had already begun to change and many had already fallen. I selected several of the low lying leaves that were still mostly green, wrapped the stems with tape, assigned them a number, and photographed them. Over the next six days I came back more or less at the same time of day taking pictures of the leaves I had selected. During those 6 days the tree lost most of its leaves as can be seen below.
​
Picture

I show below the change in leaf color of six leaves on the tree over the observation period of six days. Each column corresponds to one day.  Some of the leaves fell between days 5 and 6, but I was able to retrieve them from the ground and photograph them.
​
Picture

You can see that the leaves change color at different rates and the transition is far from homogeneous. In some cases there are spots of intense red color that appear and then spread, whereas in other cases the green over an area of the leaves fades and is replaced by a diffuse red. The green color is, of course, the pigment chlorophyll which is degraded during the fall. In the particular case of maples, as chlorophyll is degraded, the leaves produce another pigment called anthocyanin which is responsible for the red color and may play a protective role during leaf senescence.
 
The timeline method will work best if the entities under study and the way they change are representative of the overall population under study. As the leaves I chose to study were the most accessible ones at the bottom of the tree, they may not be wholly representative of the changes in the leaves at the top of the tree. Other differences may be caused by variables such as disease, amount of available sunlight, etc. Ideally I should have taken a larger sample from leaves in different parts of the tree at several heights and evaluated them over time.
 
The Cross-Sectional Method
As you saw above, at any given time there are a number of leaves at different stages of their color changing process. This fact allows the application of the cross-sectional method. To apply this method, I photographed several leaves in the first day (a cross section in time) and using these leaves I put together a possible sequence of leaf color change that describes the overall process as shown below from top left to bottom right.
​

Picture

The cross-sectional method involves much less work than the timeline method, and is intended to be an overall representation of the change of leaf color in the tree. However, care must be taken in selecting the individual leaves to put together the representative leaf change sequence. There are some obvious differences between the sequence I put together using the cross-sectional method and the changes displayed by the individual leaves using the timeline method. In particular, the appearance of the red color and its boundary in the cross-sectional sequence seems to be more vivid, sharper, and circumscribed than that displayed by the change in most of the individuals leaves I studied. If I repeat this study, I have to be more careful in my methodology and select a wider variety of leaves.
 
The timeline and cross-sectional methods have many applications in science.
 
An example of an application of the timeline method in the present is using radio-tracking technology (nowadays improved by satellite and GPS systems) and genetic monitoring to study movements of wildlife populations and the way they change over time. But scientists can also use the timeline method to study living things in the past. Because living things changing through time leave a sequential record of their change in rocks (fossils) and also to a certain extent in the stages of an embryo’s development, scientists can use fossils and embryology to piece together how organisms evolved over millions of years. The timeline method can also be applied to study how non-living things changed in the past.  For example, scientists have measured the concentration of carbon dioxide (CO2) trapped in air bubbles inside the ice of the polar caps going back hundreds of thousands of years, obtaining important information regarding how this relates to atmospheric temperatures and global warming.
 
Ideally the timeline method is preferable to the cross-sectional method, but the cross-sectional method is sometimes the method of choice if there are restrictions in time or resources available for the study, or in the case of processes that occur over very long intervals of time without leaving any records. Studying the genes or proteins of living organisms and comparing them to each other to figure out their interrelationships is an application of the cross-sectional method. A remarkable application of the cross-sectional method is the study of galaxy collisions. These events take billions of years, so it’s impossible to follow them over time. To study galaxy collisions, astronomers photograph galaxies in different stages of collision (cross section) and write programs to explain the different stages they observe in the process as described in the video below.
​


​The timeline and the cross-sectional methods allow scientists to peer back in time and uncover the changes that took place in the past and how they shaped the present, and to uncover which changes are taking place in the present and how they may shape the future.

 
The photographs belong to the author and can only be used with permission.
​

Share

0 Comments

Your comment will be posted after it is approved.


Leave a Reply.

Details

    Categories

    All
    911
    Absence Of Evidence
    Adrenaline
    Adrenochrome
    Advances In War Medicine
    Affidavits
    Airplane On Conveyor Belt
    Alder's Razor
    Alfred Wegener
    Alzheimer's Disease
    Amyloid Theory
    Ancient Astronauts
    Animal Rights
    Animals
    Anthony Fauci
    Anthropomorphism
    Antibodies
    Anti Vaccination
    Astronauts
    Authority Figure
    Autumn
    Bambi
    Believers
    Bias
    Big Bang Theory Sitcom
    Bigfoot
    Bill Ney
    Black Death
    Black Holes
    Blind Experimental Design
    Brain
    Brains
    Building 7
    Buoyancy
    Cancer
    Cannonballs
    Carnivores
    Catoctin Mountains
    Cell Culture
    Center Of Mass
    Challenger
    Chance
    Chemical Names
    Chemical Reactions
    Chemtrails
    Chesapeake Bay
    Child Abuse
    Child Testimonies
    Chimborazo
    Citations
    Citogenesis
    Civil War
    Climate Change
    Climategate
    Climate Skeptics
    Clinical Trial
    Coelacanth
    Coincidence
    Cold-Stress
    Communicating Science
    Completeness Of Scientific Theories
    Consciousness
    Conspiracy
    Contrails
    Controls
    Coquina Rock
    Coronavirus
    Counterintuitive Facts
    COVID19
    COVID 19 Vaccine
    COVID-19 Vaccine
    Creationism
    Cross-Sectional Method
    Cryptozoology
    Dan Shechtman
    Demonic Possession
    Density
    Devotion To Science
    Dihydrogen Monoxide
    Dinosaurs
    Discrimination
    Disgust
    Dishonesty In Science
    Diversity In Methodologies
    Diversity In Scientists
    DNA
    Doctors
    Dog Experiments
    Donald Trump
    Double Slit Experiment
    Do Your Own Research
    Dreams
    Dr. Gloom's Crypt Of Curiosities
    Drugs
    Dust Bunnies
    Eclipse
    Efrain Racker
    Einstein
    Elections 2020
    End Of The World
    Erosion
    Established Science
    Everest
    Evidence
    Evolution
    Exorcism
    Experimenter Bias
    Experiments You Can Do In Your Home
    Experts
    Extinction
    Face Masks
    Facts
    Faith
    Faith Healing
    Fall
    Falsifiability
    Fantastical Claims
    Fauna
    Fear
    Feynman
    Finger Snapping
    Fosbury Flop
    Francis Crick
    Frankenstein
    Fraud
    Frederick's Municipal Forest
    Free Will
    Friction
    Fruit Fly
    Funerals
    Funny
    Galaxies
    Genes
    Genius
    Geology
    Ghost
    Global Warming
    Global Warming Denial
    God
    Gravitational Lens
    Gravitational Waves
    Gravity
    Gun Violence
    Hanlon’s Razor
    Hearing
    Hearing Aids
    Hearing Loss
    HeLa Cells
    Henrietta Lacks
    Heroic Science
    Hitchens's Razor
    Hoax
    Homosexuality
    HPV Vaccine
    Human Experimentation
    Human Folly
    Hunting
    Hurricane
    Hydroxychloroquine
    Hypothesis
    Ignaz Semmelweis
    Ignorance As Evidence
    Immunotherapy
    Infamy Or Glory
    Influenza
    Insults
    Intelligence
    Intelligence Tests
    Intelligent Design
    Intersex
    Iraq War
    Irish Washerwoman
    Isaac Asimov
    James T. Kirk
    James Watson
    Katherine Hayhoe
    Language
    Lazarus Effect
    Left Fork Rocks
    Level Of Detail
    Libet Experiment
    Lightning
    Limericks
    Limitations Of Science
    Loch Ness Monster
    Lord Howe Island Stick Insect
    Loud Music
    Luck
    Mad Scientist
    Magnus Effect
    Malaria Vaccine
    Max Planck
    Medical Risks
    Medical Terms
    Mediums
    Men
    Mental Illness
    Mice
    Microbiome
    Milgram Experiment
    Mind
    Mind In The Gutter
    Misuse Of Science
    MMR Vaccine
    Mnemonic Devices
    Moments Of Discovery
    Monty Hall Puzzle
    Moon
    Movies
    NASA
    Natural
    Nature
    Nature Of Science
    Negative Evidence
    Nerds
    Newton
    Nobel Prize
    NOMA
    N-Rays
    Obesity
    Occam's Razor
    Open Mind
    Ouija Board
    Outreau
    Oxbow Lakes
    Para-Dimethylaminobenzaldehyde
    Paranormal
    Pasteur Louis
    Peak Of Illusion
    Peers
    Perception
    Philosophy
    Phobias
    Phrenology
    Physics
    Pink Lady's Slippers
    Plague
    Politicization Of Science
    Polywater
    Popper’s Falsifiability Principle
    Possible/Impossible
    Power To The People!
    Predatory Journals
    Pregnancy
    Premonitions
    Probability
    Propaganda
    Prophesy
    Pseudoscience
    Psychic
    Publication
    Puerperal Fever
    QAnon
    Quack
    Quackery
    Quantum Mechanics
    Quartzite
    Racism
    Radical New Ideas
    Radioactivity
    Radium
    Randomness
    Ratio Sapientiae
    Ratio Scientiae
    Reality
    Reason
    Religion
    Rock Climbing
    Rosalyn Franklin
    RSV Vaccine
    Sagan's Standard
    Salem Witch Trials
    Sample Size
    Science Fiction
    Science Jokes
    Science Pranks
    Scientific Consensus
    Scientific Establishment
    Scientific Guidelines
    Scientific Journals
    Scientific Method
    Scientific Names
    Scientific Question
    Scientific Terms
    Scientific Theories
    Seashells
    Self-Experimentation
    Shape Of The Earth
    Skepticism
    Skeptics
    Skin Color
    Slavery
    Snake Oil
    Soccer
    Sonic Hedgehog
    Space
    Spanish Flu
    Spontaneous Generation
    Stanley Prusiner
    Stars
    Star Trek
    Statistical Significance
    Statistics
    Sublime/Ridiculous
    Suicide
    Sun
    Superstition
    Surface To Volume Ratio
    Swanson Conversion
    Swine Flu
    Tangier Island
    Taxonomy
    Technical Details
    The Support Of God
    Thomas Young
    Timeline Method
    Tooth Worm
    Transposable Elements
    Trusted Messenger
    Trust In Scientists
    Truth
    Tyranny Of Fantasy
    Understanding
    Universe
    Vaccine Hesitancy
    Vaccines
    Vacuum
    VAERS
    Valley Of Despair
    Values
    Video Games
    West Side Story
    West Virginia Penitentiary
    Wikipedia
    William Shatner
    Wolf Rock
    Women
    World Trade Center
    Xenophobia
    Y Chromosome
    Zinc
    Zombies

    Archives

    October 2024
    September 2024
    August 2024
    July 2024
    June 2024
    May 2024
    April 2024
    December 2023
    November 2023
    October 2023
    September 2023
    May 2023
    April 2023
    March 2023
    February 2023
    January 2023
    November 2022
    October 2022
    September 2022
    August 2022
    July 2022
    June 2022
    May 2022
    April 2022
    August 2021
    July 2021
    June 2021
    May 2021
    April 2021
    March 2021
    February 2021
    January 2021
    November 2020
    October 2020
    September 2020
    August 2020
    July 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    May 2017
    April 2017

    RSS Feed

Proudly powered by Weebly
  • Home
  • Meet the Author
  • Ratio Scientiae Blog
  • Random Science
  • Writing & News
  • Nonfiction Books
    • Science Can Be Right Because It Can Be Wrong
    • The Gift of Science
    • Random Science
  • Fiction Books
    • The Sun Zebra
    • Spirit Women
  • Science Cat (Mascot)
  • Contact